• CDA3201C • Intro. to Logic Design • V.P. Nelson, • Fall

Q5-Sample, Page 1 of 2

October 25, 2000

Name:	Grade:	/10

[5] 1) Design 2-b binary multiplier using one decoder and NAND gates. The bits of the input numbers and the output product are as given in the following equation:

A1 A0 x B1 B0 = P3 P2 P1 P0

- [1] **1.a**) Fill the following truth table that defines the relationship between the two 2-b numbers (total of 4 binary inputs) and the 4-b product.
- [1] **1.b**) Find the mintern expansion for each of the output bits directly from the truth table.

Inputs Numbers Output Product		Inputs Numbers		
A1A0	B1B0	P3 P2 P1 P0	decimal	
				P3 =
				P2 =
				P1 =
				P0 =

[3] **1.c**) Realize the above outputs using the following 4-16 decoder and NAND gates.

Dr. Bassem Al-Halabi, S&E362

Dr. Bassem Al-Halabi, S&E362	October 25, 2000		
Name:	Grade:	/10	

[5] 2) Show the necessary input connections to realize the following Boolean expression using the 8-to-1 multiplexer shown below. Show all input and output connections.

 $F(A,B,C,D) = \sum m (1,3,4,5,8,10,12)$

• CDA3201C • Intro. to Logic Design • V.P. Nelson, .. • Fall 2000•

Q5-Sample, Page 2 of 2

