• CDA3201C • Intro. to Logic Design • V.P. Nelson, .. • Fall 2000 •

Q8-Sample, Page 1/1

Dr. Bassem Al-Halabi, S&E362

October 25, 2000

- [10] 1) The following state table describes the behavior of a Moore sequential machine with 4 states A/B/C/D, 1 input X and 2 outputs Z1Z2.
- [2] **1.a**) From the next state table, complete the state graph

Present State	Next X=0	State X= 1	Outputs Z1Z2			A
А	В	В	10	D	$\left(\begin{array}{c} \mathbf{C} \end{array} \right)$)0
В	С	D	01		$\left(11 \right)$	
С	А	С	11	\smile	\smile	B
D	D	А	00			
			-			

[+1] **1.b**) Describe the behavior of the above Moore machine in English. That is what sequences the outputs will go through if the input changes to a certain value in a certain state?

- [2] **1.c**) Use the indicated binary assignments to complete the transition table below.
- [2] **1.d**) Fill the next state maps for each of the two required flip-flops.
- [2] **1.e**) It is required to use a TFF to implement Q1 and a JKFF to implement Q2. Fill the T and JK input excitation maps from the next state maps.

Present	Next	Outputs	
State	X=0	X= 1	Z1Z2
00			
01			
11			
10			

[2] **1.f**) Write the minimized input expressions for each of the two flip-flops.

